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Abstract

This paper introduces and discusses a method to rigorously classify and prioritize UCTs using
Bayesian inference and admissible regions. A detailed derivation and discussion of the methodology
is given, followed by a generalized definition of prioritization parameters. Several example prioritization
parameters including ‘time left to detect,’ ‘zero-effort miss,’ and ‘effective albedo-area’ are motivated and
given. A number of illustrative applications with optical UCTs are examined to demonstrate information
that can be extracted from each observation. Finally, the information extracted from each UCT is then
compared and approaches to observation prioritization discussed.

1 Introduction

Space Situational Awareness (SSA), the detection, tracking, and characterization of Space Objects (SOs),
is needed to protect the United States and its allies and to maintain economic and diplomatic objectives.1,2

The U.S. Strategic Command (USSTRATCOM) Joint Space Operations Center (JSpOC) operates the Space
Surveillance Network (SSN) and currently tracks 17,000 objects with diameters greater than 10 cm, of which
approximately 1,000 are active.3,4 Presently, the majority of JSpOC SSN Space Object Catalog (SOC)
maintenance is done using optical and radar measurements of space debris and active spacecraft.5

A central problem in constructing and maintaining the SOC is the allocation of relatively few sensor
assets to the task of tracking the existing 17,000 objects (some of which maneuver without notice) as well
as detecting & characterizing new objects. This task is confounded by the intuitive realization that one
can only track and improve orbit estimates if the SO orbit is already known. Further, some space objects
may have the potential to interact with on-orbit assets (e.g., collisions), necessitating further scrutiny and
characterization. Thus, sensor asset tasks must be intelligently prioritized between searching, tracking, and
characterization activities for new or lost SOs.

The problem of command and control of the SSN to detect and track SOs using information theoretic
methods has received renewed interest in recent years, and has a rich body of theoretical literature (see
Blackman,6 Mahler,7 and their cited literature). A selection of representative methods applied to the SSA
detection & tracking problem include risk-based sensor tasking,8 combined estimation / tracking approaches,9

and Adaptive Entropy-based Gaussian-mixture Information Synthesis Finite Set Statistics (AEGIS-FISST)
methods.10 Each of these methods quantifies performance of the sensor allocation problem using measures
of state uncertainty statistics and / or the risk that there are undetected SOs.
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However, minimizing uncertainty in the dynamical states of the SO population is only one element of
effective SSA. Because “... SSA involves characterizing, as completely as necessary, the space capabilities
operating within the terrestrial environment and the space domain,2” the problem of allocating finite sensors
to the tasks of SO detection, tracking, and characterization is inherently a high dimensional multi-objective
optimization problem. Myopic approaches to minimize state uncertainty have no guarantees that sufficient
observation resources will be allocated to objects that, for example, may a) pose collision risks, b) may not be
found again unless immediate new observations are made, or c) necessitate non-dynamical characterization
activities. This observation severely complicates the problem of SSN resource allocation.

Aside from emphasizing that the SSA resource allocation multi-objective optimization problem exists,
this investigation does not presume to pose a specific solution approach to the problem. Rather, the scope of
this investigation is to develop a rigorous, generalized framework to extract actionable information from an
initial Uncorrelated Track (UCTs), generating necessary inputs to the SSA resource allocation problem. This
subproblem is particularly troublesome, as with a single UCT, it is often not possible to uniquely identify
the state of the object, or how useful it might be to immediately prioritize additional observations.

In operational reality, many observations of space objects take place over short periods of time or within
small sensor fields of regard and do not possess sufficient geometric diversity to initiate well posed classi-
cal Initial Orbit Determination (IOD) algorithms. When a sequence of measurements (UCTs) cannot be
associated with entities in the Space Object Catalog (SOC), operators are faced with the problem of deter-
mining the potential threat of the object and obtaining further measurements. The solution to this problem
is confounded in scenarios with an overabundance of UCTs and limited sensor tasking availability. This
investigation endeavors to rigorously provide actionable, attributable information on each UCT with which
tasking decisions regarding followup observations may be made.

Admissible Region (AR, sometimes called Constrained Admissible Region - CAR) methods, i.e., meth-
ods to constrain undetermined states using a-priori constraint hypotheses, have been proposed to support
data association and track initiation tasks. Well before their use in data association for asteroids and SOs,
admissible regions have been used in stochastic economic modeling,11 network traffic management for au-
tomated teller machines,12 data association for consumer behavior prediction,13 and fuzzy logic resource
management.14

Milani et al.15 first proposed using ARs to assist in the optical detection and discrimination of asteroids.
This work is extended to SO detection and discrimination using both optical and radar measurements
by Tommei et al.16 More recently, the admissible region approach has been applied to SO detection and
discrimination using time-resolved magnetometer measurements.17 Recent efforts refine these approaches and
make further advances in the association of multiple disparate UCTs.18,19 While generating an admissible
region does not give a specific initial state to initiate an estimator, it can be used to initialize an ensemble filter
(particle filter or unscented particle filter) that approximates the admissible region as a uniform probability
density function.20

This investigation builds upon these previous efforts by observing that, for each UCT, there is a) some
phenomenological information that can be used to infer SO characteristics, and b) a continuum of discrete
individual state hypotheses with a well defined probability density function composing the Admissible Re-
gion. By carefully examining this continuum of state hypotheses and phenomenological information while
respecting the statistics of the admissible region probability distribution, it is possible to rigorously assign
probabilities that a given SO possesses a specific orbit classification or generic prioritization parameter (e.g.,
‘time left to detect,’ ‘zero-effort miss to the International Space Station,’ or ‘albedo-area’).

The specific contributions of this research effort are 1) The introduction and development of an approach
to probabilistically classify a given UCT using the admissible region and Bayesian inference without a-priori
knowledge, 2) The extension of the approach to condition the classification on a-priori knowledge of the
distribution of possible UCT populations (such as the Space Object Catalog), 3) A method to verify whether
a classification probability (with or without a-priori knowledge) is truly zero or the result of numerical
implementation, and 4) The inclusion of UCT prioritization measures and approaches to generate attributable
statistical measures to support UCT prioritization decisions.

This paper uses the following organization on its contents: §2 introduces the Admissible Region and

2



develops contributions 1, 2, and 3. §3 defines arbitrary prioritization parameter functions, statistical tests
on such functions and details several candidate functions (contribution 4). §4 briefly reviews the construction
of Admissible Regions for optical measurements, and §5 presents several scenarios demonstrating the utility of
the approaches presented in this paper. Finally, §6 summarizes results and discusses impact of the approach.

2 Classification Approach

To generate the first three contributions of this investigation, Admissible Regions are formally developed
and defined in the first subsection. Subsequent subsections then progress to demonstrate the primary con-
tributions of this paper.

2.1 Review of Admissible Regions

The admissible region approach to initial orbit determination is discussed extensively in the literature.15,16,18,21,17

However, notations often differ between sensor detection types (e.g., optical, radar, magnetometer) and from
author to author. This subsection briefly introduces a unified notation (originally proposed by Worthy &
Holzinger) and serves as a primer for the notation used in the main body of this investigation.

Consider a measurement phenomenology that corresponds to the measurement model

y = h(x, tk;k) (1)

where y ∈ Rm is a measurement, x ∈ Rn is the space object state, tk is the time of the observation, and k is
a set of additional relevant parameters. If m < n, x cannot be uniquely determined from y, tk, and k ∈ Rp.
However, if x is properly chosen and partitioned such that, at time tk,

x =
[
xTd xTu

]T
(2)

where xd ∈ Rd (d < n) are the states that can be uniquely determined, and Xu ∈ Ru, (u+ d = n) captures
the undetermined states from the observation, then it must be true at time tk that

xd = h−1(y,xu, tk;k) (3)

Given just the measurement information y at time tk, xu ∈ R is entirely unconstrained. However, there
are often reasonable conditions imposed on possible solutions xu by the operators. These are generally
introduced as a collection of inequality constraints on the solution x which may be represented in vector
form as

g(xd,xu, tk;k) ≤ 0 (4)

where g : Rd × Ru × R× Rp → Rl. Then, substituting Eqn. (3) in to Eqn. (4) generates

g(h−1(y,xu, tk;k),xu, tk;k) = κ(xu; tk,y,k) ≤ 0 (5)

These constraints κ(xu; ·) ≤ 0 on the undetermined states xu are referred to as the Admissible Constraints.
Any volume of space xu ∈ A ⊆ Ru that satisfies κ(xu; ·) ≤ 0 is then said to be the Admissible Region (or
the Constrained Admissible Region). More formally, the admissible region may be defined in set notation as

A ≡ {xu ∈ Ru|κ(xu; ·) ≤ 0} (6)

There are three important observations that must be made here. The first is that each and every undeter-
mined state xu ∈ A, when combined with the determined states xd ∈ Rd, forms a full state x ∈ Rn. The
second observation is that all such states x = [xTd xu]T necessarily generate exactly the same measurement
using the measurement model given in Eqn. (1). Lastly, it must be emphasized that the Admissible Region
A is the set of admissible undetermined states xu under the hypothesis that κ(xu; ·) ≤ 0 is true - the quality
of this assumption most assuredly depends on the object in question.
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To illustrate this last point, consider an optical observation of an asteroid. Given the measurements
made, an admissible region can be constructed assuming that the object possesses a closed orbit about the
Earth. This in turn will generate an Admissible Region A, however all admissible points xu ∈ A cannot
include the true asteroid state - the admissible hypothesis used to form A, that κ(xu; ·) ≤ 0, is false.

Nevertheless, while care must be exercised, such scenarios can be handled using common hypothesis
testing methods. The following subsection introduces the classification notation and approach constituting
the primary contributions of this investigation.

2.2 Classification in the Admissible Region

Suppose that the undetermined state space Admissible Region A can be partitioned in to a finite set of
disjoint sub volumes, each corresponding to a state classification of interest.

A1 ∪ · · · ∪ Ai ∪ · · · ∪ Aj ∪ · · · ∪ AN ≡ A (7)

where Ai ∩Aj = ∅ ∀i 6= j and A is the set that contains all objects of interest (ex: Earth-orbiting objects).
As with all probabilistic classification problems, it is common to include a ‘none-of-the-above’ (NOTA)
classification to ensure that all of the classifications Ai span the parent set A.

Next, a hypothesis Hi can be formed that an observed object with undetermined states xu is a member
of a given classification Ai under the condition that it is a member of the parent set A.

Hi = {xu ∈ Ai|xu ∈ A} (8)

To compute the probability that Hi is true, the random variable Xu ∈ Ru from which any specific xu is
instantiated is introduced. Then, an application of Bayes Theorem produces

P [Hi] = P [Xu ∈ Ai|Xu ∈ A] =
P [Xu ∈ A|Xu ∈ Ai]P [Xu ∈ Ai]

P [Xu ∈ A]
(9)

Because Ai ⊆ A, P [Xu ∈ A|Xu ∈ Ai] = 1. P [Hi] then simplifies to

P [Hi] =
P [Xu ∈ Ai]
P [Xu ∈ A]

(10)

To compute each of these probabilities of set membership, suppose that Xu has some probability density
function (PDF) fA(xu) that describes the probability density of Xu within A ⊆ Ru. Then, the probability
that Xu ∈ A can be computed using

P [Xu ∈ A] =

∫
A
fA(xu)dxu (11)

and similarly,

P [Xu ∈ Ai] =

∫
Ai

fA(xu)dxu (12)

If the PDF fA(xu) is known, the probability P [Hi] may be computed using (10), (11), and (12). However, if
no information exists to characterize probability distribution fA(xu), then it must be the case that fA(xu)
is uniform over the state space volume of A. Thus, (11) and (12) must necessarily become

P [Xu ∈ A] =

∫
A
kAU(xu)dxu = kAVol(A) (13)

and

P [Xu ∈ Ai] =

∫
Ai

kAU(xu)dxu = kAVol(Ai) (14)
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where kA is the value of the uniform density at any point in the volume of interest, U(xu) is the uniform
distribution, and the Vol(·) operator computes the total volume of the set of interest. Finally, P [Hi] can be
computed as

P [Xu ∈ Ai|Xu ∈ A] = P [Hi] =
Vol(Ai)
Vol(A)

(15)

Because, as defined in (7), the sets Ai, i = 1, . . . , N fully span the parent set A, it must be true that

N∑
i

P [Hi] = 1 (16)

The result given in (15) constitutes the first contribution of this investigation and bears further discussion.
Firstly, it may be the case that many classifications Ai = ∅. When this occurs there are no admissible states
xu ∈ A that correspond to the classification Ai. While at first this observation may appear uninformative,
using the available measurement evidence y to eliminate possible classifications Ai has substantial utility, as
in practice this step reduces the number of potential classification hypotheses Hi by a sizable factor. Second,
it is common for some classification probabilities Hi to be quite small. This should not be taken as evidence
that the classification Ai should be discarded - further measurements must be gathered to determine whether
states xu ∈ Ai are consistent with available information.

In some scenarios, fA(xu) is not known, but there is information available that describes the distribu-
tion of the full state information. The following subsection develops an approach to condition Hi on such
information.

2.3 Conditional Hypotheses Using A-Priori Information

In the event that a-priori information [XT
u XT

d ]T = X ∈ C is available, then the hypothesis Hi must be
modified. This may be the case when it is known or assumed that the distribution of the full admissible region
is well represented using known catalog information (e.g., the Space Object Catalog). In this case, the full
state-space may be partitioned in to individual classification states such that C1∪· · ·∪Ci∪· · ·∪Cj∪· · ·∪CN ≡ C,
much like the admissible region sets comprising A. Under such a partition, the set Aj is generated when the
measurements xd are imposed on Cj . With this definition, some sets Cj are not compatible with evidence
xd, yielding Aj = ∅. The hypothesis Hi conditioned on X ∈ C is

P [Hi|X ∈ C] = P [Hi,ap] = P [Xu ∈ Ai| (Xu ∈ A) ∩ (X ∈ C)]
= P [(Xu ∈ Ai|Xu ∈ A) ∩ (Xu ∈ Ai|X ∈ C)]

(17)

Because, by definition,
P [Xu ∈ Ai] ≡ P [X ∈ Ci|xd] (18)

It can be shown that
(Xu ∈ Ai|X ∈ C)⇒ (X ∈ Ci|X ∈ C) (19)

Hence, using this result combined with Bayes Theorem,

P [Hi,ap] = P [(Xu ∈ Ai|Xu ∈ A) ∩ (X ∈ Ci|X ∈ C)] (20)

= P [(Xu ∈ Ai) ∩ (X ∈ Ci) | (Xu ∈ A) ∩ (X ∈ C)] (21)

=
P [(Xu ∈ A) ∩ (X ∈ C) | (Xu ∈ Ai) ∩ (X ∈ Ci)]P [(Xu ∈ Ai) ∩ (X ∈ Ci)]

P [(Xu ∈ A) ∩ (X ∈ C)]
(22)

Because Ai ⊆ A and Ci ⊆ C, the first term in the numerator simplifies to unity. Then,

P [Hi,ap] =
P [(Xu ∈ Ai) ∩ (X ∈ Ci)]
P [(Xu ∈ A) ∩ (X ∈ C)]

(23)

=
P [Xu ∈ Ai]P [X ∈ Ci]∑N

j=1

∑N
m=1 P [Xu ∈ Aj ]P [X ∈ Cm]

(24)
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Since Cm conditioned on a measured xd is exactly Am, all terms in which j 6= m disappear, giving the form

P [Hi,ap] =
P [Xu ∈ Ai]P [X ∈ Ci]∑N
j=1 P [Xu ∈ Aj ]P [X ∈ Cj ]

(25)

Defining fA(xu) and fC(x) as the probability density functions over A and C, respectively, the final form of
the hypothesis probability is given

P [Hi,ap] =

(∫
Ai
fA(xu)dxu

)(∫
Ci fC(x)dx

)
∑N
j=1

(∫
Aj
fA(xu)dxu

)(∫
Cj fC(x)dx

) (26)

Again, it follows that
N∑
i=1

Hi,ap = 1 (27)

The result in Eqn. (26) is general to this point, and is correct for arbitrary probability densities. Under the
simplifying assumption that the probability densities of Xu and X are uniform over each region A and Ci,
further simplification reveals that

P [Hi,ap] =

(∫
Ai
kAU(xu)dxu

)(∫
Ci kC,iU(x)dx

)
∑N
j=1

(∫
Aj
kAU(xu)dxu

)(∫
Cj kC,jU(x)dx

) (28)

=
kAVol(Ai)kC,iVol(Ci)∑N
j=1 kAVol(Aj)kC,jVol(Cj)

(29)

which provides

P [Hi,ap] =
kC,iVol(Ai)Vol(Ci)∑N
j=1 kC,jVol(Aj)Vol(Cj)

(30)

While it may appear that assuming uniform probability densities over A and Ci, i = 1, . . . , N , is restrictive,
as N increases the collection of regions, each with uniform distributions, can approximate more arbitrary
probability distributions. Further, since the objective of the approach is to classify the admissible states
Xu ∈ A, in practical applications it may be enough to define a sufficiently large number of classifications
such that the piecewise uniform approximation is appropriate. Either the general form in Eqn. (26) or the
simplified form in Eqn. (30) may be used, depending on the application. In UCT prioritization applications,
the time available to make a decision based on classification information is sometimes very short, however,
making Eqn. (30) an attractive option. With the classification hypotheses probability Hi,ap conditioned on
state space object density being defined, the second contribution of this investigation is demonstrated. The
following subsection discusses specific application related issues when using a space object catalog as the it
a-priori information.

2.4 Classification Approach and Space Object Catalogs

A space object catalog is an ideal collection of data to use as a-priori information when classifying space
objects that are likely to be well represented as members of the space object catalog. In this case, a
classification hierarchy may be defined and used to generate Ci, i = 1, . . . , N . Under such an approach, a
given space object catalog may be subjected to a classification algorithm to empirically compute the densities
kC,i used in Eqn. (10). This exact methodology is used in the Simulated Results section (§5) to generate
a-priori conditioned classification hypotheses.

It must be emphasized that the conditioned hypothesis Hi,ap should only be used if it is assumed that
the SO in question is well represented as a member of the existing space object catalog. If the SO is not
well represented by the space object catalog (e.g., under-observed orbit regimes, new objects), then the
classification hypothesis Hi without the a-priori information may be more appropriate.
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2.5 Vanishing Classification Probability Test

Depending on the approach used to construct the disjoint state classifications C1∪· · ·∪CN = C, it may be the
case that a numerical implementation computing P [Hi] using Eqn. (15) or P [Hi,ap] using Eqn. (26) results
in zero probability. However, to verify that this probability is not the result of insufficient discretization or
sampling used to numerically compute (15) or (26), it may be good practice to confirm whether P [Hi] = 0
(P [Hi,ap] = 0) or whether the probability is simply below the level that a given numerical discretization or
sampling method can detect. Said differently, a test must be developed to determine whether Ai = ∅ or
whether Ai is simply a very small region in A.

One approach to demonstrate that Ai 6= ∅ is to find at least one undetermined state xu ∈ Ai ⊆ A. If
such a subspace state xu can be found, then it is necessarily true that at least one admissible state exists
that belongs to Ci. The problem is now to develop a method to compute admissible values of xu ∈ Ai. The
first test to evaluate is whether the known state space values xd (generated from y, k, and tk) are consistent
with Ci. If xd is inconsistent with Ci, then Ai is truly empty (= ∅). However, if xd is consistent with Ci,
then there may be at least one valid xu ∈ Ai ⊆ A.

The method to compute such a xu is quite similar to the Admissible Region method in general. Given
the known xd, the volume of space xu that composes the membership of classification Ci can be computed
as

Ci,u ≡ {xu ∈ Ru|xu, xu consistent with Ci} (31)

Thus, Ci,u ∈ Ru, just as A ∈ Ru. Intuitively, if Ci,u intersects with A, then there must be at least one
xu ∈ Ai ⊆ A. Equivalently, this forces the natural result that

Ai ≡ A ∩ Ci,u (32)

This identity is illustrated in Figure 1. There are three possible intersection cases between A and Ci,u.

Figure 1: Illustration of A ∩ Ci,u ≡ Ai ⊆ A ⊆ Ru

1. A ∩ Ci,u = ∅ ⇒ there are no admissible xu ∈ Ai.

2. (A ∩ Ci,u 6= ∅) and (0 ≤ dimA ∩ Ci,u = u− 1) ⇒ there is only an intersection over a subspace of Ru
where xu is in both sets. While Ai 6= ∅ and ∃xu ∈ Ai ⊆ A, the intersection subspace has precisely
zero volume when integrated over the admissible region Ai ⊆ Ru, causing all such integrals to vanish.
Thus any set membership hypothesis must also have zero probability (e.g., P [Hi] = P [Hi,ap] = 0).

3. (A ∩ Ci,u 6= ∅) and (dimA ∩ Ci,u = u) ⇒ there is a an intersection in Ru such that a volume integral
over Ai ⊆ Ru is non-zero (however small).

In general, most intersections will correspond to case 1 or case 3. Now, consider possible numerical
methods to generate Ai ⊆ Ru. A direct analytical computation method to generate A∩Ci,u is quite difficult
and depends greatly on the admissible region A and the admissible classification states Ci,u. However, a
simple numerical approach is to discretize or sample particles from the set Ci,u. Then, for each point or
particle xu ∈ Ci,u, compute whether xu ∈ A by evaluating the inequalities κ(xu; ·) ≤ 0 The resulting spread
of admissible discrete xu can the be evaluated to determine whether there is no intersection, intersection
over a subspace, or intersection over Ru.
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3 Distributions of Prioritization Decision Parameters

Since every admissible point xu ∼ Xu ∈ A is consistent with the collected measurements forming xd,

each x =
[
xTu xTd

]T
may be considered a candidate state hypothesis drawn from the random variable X =[

XT
u xTd

]T
. In a manner similar to the classification approach discussed in §2, knowledge of the distribution

of Xu may be used to compute distributions of decision parameters that serve as inputs to prioritization
schemes. This section develops the third contribution of this effort. Suppose that the following arbitrary
mapping function

m = µ (xu;xd,y,k, t) (33)

computes the decision parameter m given the a specific realization of xu, the determined state partition xd,
observed information y, arbitrary parameters k, and decision time t. When Xu is allowed to be a random
variable, then

M = µ (Xu;xd,y,k, t) (34)

Generates the resulting random variable representing the random decision parameter M . This random
function can be conditioned on a-priori information (e.g., X ∈ C) and / or examined under the assumption
that Xu ∈ Ai, depending on the user’s objectives. In general, the mapping function µ may be nonlinear
and even discontinuous, making a thorough analytical characterization of arbitrary M out of scope for this
investigation. Regardless, because the continuum of states in the admissible region A (and by extension
Ai) may be realized, the probability density function and cumulative distribution function of M may be
numerically computed and tested using statistical methods. Short outlines of several possible methods are
briefly discussed.

3.1 Minimum / Maximum Value Probability Thresholds

Because M is a random variable, one approach to using it to inform prioritization decisions is to compute the
probability that its value lies within minimum and/or maximum bounds. To do so, given specific minimum
and maximum values ml and mu, respectively, one computes

P [ml ≤M ≤ mu] =

∫ mu

ml

fµ(m)dm (35)

where ml, mu, or both must be defined. The probability density of M , fµ(m), is computed analytically if
possible, or empirically if practical.

3.2 Confidence Level Thresholds

Rather than commuting the probability that the performance factor is above, below, or between specified
thresholds, one may alternately specify a confidence probability threshold for an inequality. In particular,
because the cumulative distribution function is non-decreasing, if it is smooth then

mth = arg (P [M ≤ m] = pth) (36)

where pth ∈ (0, 1) is a specified probability threshold, and mth is the value at which this probability threshold
is met.

3.3 Example Decision Parameter: Time Left to Detect

When scheduling sensor tasks it is sometimes useful to know how much longer a specific UCT may be
available for observation. To probabilistically determine how much time is left in which the object may be
detected (the ‘time left to detect’), various detection loss modes must be modeled and the minimum time at
which the signal may be lost identified. For optical systems, transit of a space object in to eclipse or out of

8



the sensor platform line-of-sight are reasonable detection loss modes. If the SO position r(t) = r(t;xu,xd, t0),
then the time to eclipse is defined as

teclipse(xu,xd, ŝ(t), t0) = arg min
t∈[t0,∞)

{ŝ(t) · r(t) > 0 ∩ ŝ(t)× r(t) = Re} (37)

where ŝ(t) is the sun unit vector. Time to sensor LOS loss is dependent on the sensor in question. If the only
limitation on the sensor is whether the Earth blocks the light of sight, then defining o(t) = o(t;xu,xd, t0),

tLOS(xu,xd, t0) = arg min
t∈[t0,∞)

{∥∥∥∥o(t) +

[
o(t)T

(
r(t)− o(t)

‖r(t)− o(t)‖

)](
r(t)− o(t)

‖r(t)− o(t)‖

)∥∥∥∥ = Re

}
(38)

Then, the performance parameter tLTD capturing the “time left to detect” is defined:

tLTD(t;xu,xd, ŝ(t), t0) = min
t∈[t0,∞)

{teclipse(t;xu,xd, ŝ(t), t0), tLOS(xu,xd, t0)} (39)

For this decision parameter, one could use either threshold probabilities or confidence level thresholds to
inform prioritization decisions. For example, the probability that at least 10 seconds remain to detect the
object can be computed.

3.4 Example Decision Parameter: Zero-Effort Miss

A chief SSA concern is the prediction and avoidance of on-orbit collision events. The Zero-Effort Miss (ZEM)
distance between the detected SO and an Object Of Interest (OI) can be computed for each state hypothesis
and statistics on the ZEM distance compiled. Supposing that the OI state rOI(t) = rOI(t,xOI, t0), the ZEM
distance is simply

dZEM = arg min
d, s.t.t∈[t0,∞)

d = ‖rOI(t)− r(t)‖ (40)

Statistics on dZEM can be used to motivate additional followup observations to complete the initial orbit
determination problem and identify whether a collision may occur.

3.5 Example Decision Parameter: Albedo-Area Product

Operationally, it is useful to characterize a new UCT by quantifying a measure of the SO size. An approximate
measure related to SO size is the albedo-area ρA. Here, ρ ∈ [0, 1] is the SO albedo (a measure of how much
illumination is reflected from the surface to the observer) and A is the instantaneous illuminated area as
seen by the observer. Optical sensors are capable of recording the brightness of an observed SO, and may
report this as the SO apparent magnitude. The apparent magnitude as viewed by the observer is computed
using

mv = −5

2
log10

(
Isun
d2

ρA

)
− 26.74 (41)

Where Isun is the illumination flux of the Sun at the SO (often in W/m2) and d is the distance between the
observer and the SO. Under the assumption that the SO distance from the sun is approximately the same
as the observer distance from the sun, then inverting this function to solve for the albedo-area product ρA
yields

ρA =

(
d2

Isun

)
10−

2
5 (mv+26.74) (42)

Unfortunately, only the product ρA may be quantified using this approach. If either ρ or A are known, then
the remaining parameter may be computed. It should be noted, however, that for SOs a typical albedo value
is ρ = 0.175.22 This value is a global averaged albedo, and will not be the case in general, particularly if the
SO is glinting.
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3.6 Discussion on Uncorrelated Track Prioritization

As motivated in the introduction, a myopic focus in improving SO or SOC uncertainty does not address
all SSA needs. The very nature of the SSA problem as a multiple objective optimization problem ensures
that there is no single ‘right’ answer for the correct sensor tasking. Depending on strategic and tactical
SSA needs, it may well be the case that the SO classification or a specific prioritization metric probabilities
supersede the straightforward objective of reducing uncertainty.

As a concrete example, consider the Low Inclination Low Earth Orbit (LILO) SSA problem23 which has
specific objectives within the general SSA problem. Here, detecting and tracking LILO objects (maximum
altitude less than 2,000km, inclination below 20◦or greater than 160◦) is the primary objective, so sensor
observation priority should be given to UCTs that have high probabilities of being LILO objects. Supposing
that multiple high-probability LILO objects are simultaneously tracked, additional prioritization metrics
such as ‘time left to detect’ can be used to prioritize observations.

4 Admissible Regions for Optical Sensors

The preceding results do not assume any specific sensor phenomenology, and may be applied to general space
object observations. Before presenting results, the approach to constructing Admissible Regions for optical
space object measurements is briefly reviewed here. Figure 2 illustrates the geometry of the problem. An
observer with position o and velocity ȯ collects measurements on a space object with position r and velocity
ṙ at time t.

Figure 2: Observer and Space Object Geometry

The relative distance vector ρ and velocity vector ρ̇ are then

ρ = r− o (43)

ρ̇ = ṙ− ȯ (44)

Because optical measurements may only capture the line-of-sight bearing (often expressed in inertial coor-
dinates) and cannot measure range, the relative distance vector is expressed as

ρ = ρ̂l(α, β) (45)

where ρ ≥ 0 is the relative range to the object from the observer, α is commonly the Right Ascension (RA),
β is the Declination (DE), and

l̂(α, β) =

 cosα cosβ
sinα cosβ

sinβ

 (46)
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Using these definitions,

d

dt
ρ = ρ̇ =

dρ

dt
l̂(α, β) + ρ

[
∂ l̂

∂α

dα

dt
+
∂ l̂

∂β

dβ

dt

]
(47)

= ρ̇̂l(α, β) + ρ
[̂
lα(α, β)α̇+ l̂β(α, β)β̇

]
(48)

Therefore, given the known observer location o and velocity ȯ, given measurements α, β, α̇, and β̇, (45) and
(48) may be used to construct admissible positions r and velocities ṙ of the observed space object. All that
is required is a hypothesis of the range ρ and range-rate ρ̇ of the space object relative to the observer. In
this formulation,

xd =
[
α β α̇ β̇

]T
(49)

and
xu =

[
ρ ρ̇

]T
(50)

To bound possible values of ρ and ρ̇ and generate an admissible region A, several constraints are defined.
The first is the mass-specific energy relative to Earth (first imposed by Milani,15 given as

g1(xu) = ε(r(ρ), ṙ(ρ, ρ̇)) ≤ 0 (51)

The energy constraint in (51) essentially requires that the space object orbit be closed about the Earth, and
assumes Keplerian motion. The second constraint used in this paper requires that the radius of periapsis be
above the surface of the Earth:

g2(xu) = Re − rp(ρ, ρ̇) ≤ 0 (52)

Finally, the third constraint imposed on the admissible region is that of illumination (first proposed by
Worthy, et al.). Because visible band optical sensors are being used in §5, it is required that the space object
be illuminated by the sun.

g3(xu) = Re − ŝ× r(ρ, ρ̇) ≤ 0 if ŝ · r(ρ, ρ̇) > 0 (53)

where ŝ is the illumination direction unit vector. Combined, g1, g2, and g3 form g(xu) ≤ 0, which in turn
formally define the admissible region A.

5 Simulated Results

From a short sequence of inertial bearing measurements to the detected SO from the observer location o,
the apparent right ascension and declination (and their rates) can be approximated at time t as It should
be emphasized that any state x = [ xTd xTu ]T corresponds to a single deterministic orbit; no other choice
of xu can generate the same orbit.

5.1 Generation of A-Priori Information using The Space Object Catalog

The Joint Space Operations Center (JSpOC) Space Object Catalog? is used as a-priori information for
the simulated results in this effort. The Space Object Catalog is ingested and classified according to the
hierarchy outlined in Table 1. The classification is interpreted as a line-by-line ‘if-elseif’ logic (in the order
shown), ensuring that each of the orbit classifications Ci are both disjoint and span the full orbit space C. The
classification approach developed here is not comprehensive and should be considered approximate; it serves
to demonstrate how a more complete and rigorous classification methodology may be generated depending
on user requirements.

Applying the classification methodology depicted in Table 1 gives the number of object entries under
each classification listed in Table 2. The probability that a randomly drawn Space Object Catalog object
possesses a specific classification Ci (P [X ∈ Ci|SOC]) is also given.

?www.space-track.org, accessed 2014/05/27
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Table 1: Classification Methodology
Periapse Apoapse Eccentricity Inclination

Classification (Ci) Min/Max (km) Min/Max (km) Min/Max Min/Max (deg)
LEO:polar Re/- -/Re + 2,000 -/- 75/120
LEO:LILO Re/- -/Re + 2,000 -/- 0/20
LEO:NOTA Re/- -/Re + 2,000 -/- -
Molniya Re/15,000 37,000/48,000 -/- 60/75
GTO:NOTA Re/10,000 -/50,000 -/- -/75

or 10,000/40,000 35,000/45,000 -/- -/75
MEO:low Re/- -/10,000 -/- -/-
MEO:subsynch 23,000/- -/32,000 -/- 45/75
MEO:NOTA 10,000/- -/40,000 -/0.1 -/-
GEO:slot RGEO − 50/- -/RGEO + 50 -/- -/20
GEO:graveyard RGEO + 50/- -/45,000 -/- 0/20
GEO:NOTA 40,000/- -/45,000 -/- 0/20
HEO:NOTA 45,000/- -/- -/- -/-
NOTA -/- -/- -/- -/-

Table 2: Space Object Catalog Classification Statistics
Classification (Ci) SOC Entries P [X ∈ Ci|SOC]
LEO:polar 7642 0.5142
LEO:LILO 17 0.0011
LEO:NOTA 3701 0.2490
Molniya:NOTA 274 0.0184
GTO:NOTA 1531 0.1030
MEO:low 123 0.0083
MEO:subsynch 261 0.0176
MEO:NOTA 33 0.0022
GEO:slot 476 0.0320
GEO:graveyard 235 0.0158
GEO:NOTA 411 0.0277
HEO:NOTA 75 0.0050
NOTA 83 0.0056
Total 14862 1.0000

5.2 Scenario Description

The observing site is assumed here to be the Advanced Electro-Optical System (AEOS) on Maui, Hawaii,
located at 20.708 deg N, 203.743 deg E, 3075m altitude. At 06:42:02 UT on June 15, 2014, several objects
described in Table 3 are considered to be detected (potentially by multiple sensors). Each object is assumed
to have inertial bearing angle and angle-rate measurements extracted from sensors (e.g., streaks, multiple
measurements over short time periods). The true orbit and classification of each detected space object
is given in classical orbit elements at the detection time epoch, where a is the semi-major axis, e is the
eccentricity, i is the inclination, Ω is the longitude of the ascending node, ω is the argument of periapsis, and
f is the true anomaly. Each For the purposes of this illustration each detection is handled and discussed in
the following subsections.

The objective of the following subsections is to apply the classification method (with and without assumed
SOC membership defined in Tables 1 and 2). Additionally, the prioritization metrics defined in §3 for ‘time
left to detect,’ ‘zero-effort miss’, and ‘albedo-area’ are computed both for the entire admissible region as
well as for each classification. For each scenario a brief discussion is given, with a more complete discussion

12



Table 3: Test Case & Detected Object Descriptions
Case Description a (km) e () i (deg) Ω (deg) ω (deg) f (deg)

1 LEO, polar 7,153 0.00012 97 38 32 113
2 LEO, equatorial 6,978 0.00030 13 56 43 101
3 MEO 30,000 0.00020 53 62 41 132
4 GTO 24,471 0.73200 23.7 56 43 101
5 GEO 42,164 0.00005 7 38 32 113
6 Molniya 24,471 0.72300 63.4 38 212 287

reserved for digesting the generated statistics and considering possible prioritization schemes. A visualization
of each UCT true orbit and observing geometry is also given (Figures 3, 5, 7, 9, 11, and 13). In each of these
figures, the green star is the observing optical telescope location (AEOS), the red triangle is the true space
object location at the time of detection, and the red line is the true orbit of the space object.
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5.3 UCT 1: Polar Orbiting LEO Object

Polar orbiting LEO objects constitute the bulk of the Space Object Catalog, and as a result often generate
UCTs. The admissible region generated by the observation is depicted in Figure 4(a) and the resulting
histograms & CDFs for the ‘Time Left-to-Detect,’ ‘Zero-Effort Miss,’ and ‘Albedo-Area’ prioritization pa-
rameters are shown in Figures 4(b), 4(c), and 4(d), respectively.

Figure 3: UCT 1 GeometryVisualization

Statistics on UCT 1 classification and prioritization parameters are compiled and presented in Tables 4
and 5. As can be seen, without assuming the SO is a member of the SOC, there is a 4.9% probability that
the UCT 1 corresponds to a LEO:polar object. However, because the majority of SOC entries correspond
to LEO:polar objects, under the assumption that the SO is a member of the SOC there is a 82.6% proba-
bility that UCT 1 possesses a LEO:polar orbit. As depicted in Figure 4(a), the majority of the admissible
region volume corresponds to NOTA, HEO:NOTA, and MEO:low orbit classifications. Conversely, if SOC
membership is assumed, then these volumes are substantially attenuated because of low SOC population
densities in those regions.

Table 4: UCT 1: LEO:Polar UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Frequency P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
LEO:polar 1403 0.0490 0.8264
NOTA 15803 0.5524 0.1011
HEO:NOTA 9617 0.3362 0.0556
MEO:low 1785 0.0624 0.0169
Totals 28608 1.0000 1.0000

The prioritization parameter statistics shown in Table 5 give substantial information for potential multi-
object prioritization schemes to ingest. Examining the ‘Time Left to Detect’ statistics, there is only a 91.5%
probability that the object will still be detectable in 10 seconds. Altnernately, there is a 95% probability
that the SO will remain detectable for 2.99 seconds. There is a very high probability (nearly 100%) that the
UCT will not approach within 50km of the ISS. In fact, 95% of all trajectories in the admissible region have
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Figure 4: UCT 1: Polar Orbiting LEO Admissible Region and Prioritization Parameter Satistics

a closest approach in excess of 4,346km. The albedo-area results in Table 5 suggest that, with an apparent
magnitude of 13, for all orbit classifications the object has either a low albedo, a small area, or both.

Table 5: UCT 1: LEO:Polar UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 0.915 2.99 1.000 4346 0.000 0.000931
LEO:polar 0.955 11.30 1.000 8012 0.000 0.001018
NOTA 0.908 2.76 0.999 3682 0.000 0.000909
HEO:NOTA 0.927 3.47 1.000 12290 0.000 0.001000
MEO:low 0.873 1.99 1.000 2987 0.000 0.000847

5.4 UCT 2: Low Inclination Low-Earth Orbit (LILO) Object

Just as LEO:polar orbits are very common in the SOC, a particular orbit classification ‘Low-Inlclination
Low Earth Orbits’ (LEO:LILOs) are known to be under-represented due to a lack of equatorial SSN assets.
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This under-representation makes investigating the proposed classification, characterization, and prioritization
methods on a LEO:LILO UCT worthwhile. UCT 2 is in fact generated by a LEO:LILO space object. The
geometry of the true orbit is shown in Figure 5.

Figure 5: UCT 2 Geometry Visualization

The admissible region for UCT 2 is plotted in Figure 6(a), while the ‘Time Left-to-Detect,’ ‘Zero-Effort
Miss,’ and ‘Albedo-Area’ statistics are depicted in Figures 6(b), 6(c), and 6(d), respectively.

An application of the classification methodology generates Table 6. Without assuming that UCT 2 is
generated by an object belonging to the SOC, using only a single underdetermined detection there is a
4.2% probability that UCT 2 is generated by a LEO:LILO object. However, if it is assumed that UCT 2 is
generated by a SOC member, then because there are so few LEO:LILO objects in the SOC, this probability
is substantially attenuated (0.07%). This emphasizes a significant potential pitfall of assuming that a SO
generating a UCT is a member of the SOC - the conclusion can only be as good as the a-priori assumptions,
and in this case the SOC LEO:LILO population is very small (only 17 LEO:LILO SOs, as shown in Table
2).

Table 6: UCT 2: LEO:LILO UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Frequency P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
GTO:NOTA 20243 0.6454 0.9574
HEO:NOTA 9634 0.3072 0.0223
LEO:NOTA 171 0.0055 0.0196
LEO:LILO 1315 0.0419 0.0007
Totals 31363 1.0000 1.0000

The UCT 2 prioritization parameter statistics shown in Table 7 are informative, however. Examining
the ‘Time Left to Detect’ statistics, there is a 96% probability that UCT 2 will continue to be detectable
for an additional 10 seconds. One classification in particular, LEO:NOTA, is observable for an additional
66 seconds with a 95% confidence. As with UCT 1, is is highly unlikely that UCT 2 will approach within
50km of the ISS over the time interval examined. Also, with an apparent magnitude of 13, the combined
Albedo-Area is rather small with 95% confidence.
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Figure 6: UCT 2: LEO LILO Admissible Region and Prioritization Parameter Satistics

Table 7: UCT 2: LEO:LILO UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 0.960 11.65 1.000 4555 0.000 0.000898
GTO:NOTA 0.956 11.13 0.991 3684 0.000 0.000883
HEO:NOTA 0.962 12.18 1.000 11920 0.000 0.000929
LEO:NOTA 1.000 63.06 1.000 11820 0.000 0.001209
LEO:LILO 1.000 18.13 1.000 11540 0.000 0.000948
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5.5 UCT 3: MEO Subsynchronous Object

Medium Earth Orbits (MEOs) contain 2:1 synchronous orbits, including the Global Positioning System
(GPS) satellites. UCT 3 is generated by a SO in MEO:synchronous, as depicted in Figure 7. The admissible
region generated by UCT 3 is shown in Figure 8(a). The prioritization parameter statistics plots for ‘Time
Left to Detect,’ ‘Zero-Effort Miss,’ and ‘Albedo-Area’ are given in Figures 8(b), 8(c), and 8(d).

Figure 7: UCT 3 Geometry Visualization

Orbit classification results for UCT 3 with and without assuming SOC membership are summarized in
Table 8. Here, it can be seen that the admissible region associated with MEO:subsynch orbits is rather small,
generating a MEO:subsynch classification probability of only 1%. Interestingly, because there are not a large
number of objects in MEO:subsynch orbits, assuming membership in the SOC reduces the probability of
MEO:subsynch classification to 0.6%.

Table 8: UCT 3: MEO:subsynch UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Count P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
GTO:NOTA 7262 0.2364 0.8578
HEO:NOTA 19116 0.6224 0.1106
NOTA 3925 0.1278 0.0251
MEO:subsynch 307 0.0100 0.0062
MEO:NOTA 105 0.0034 0.0003
Totals 30715 1.0000 1.0000

The prioritization parameter statistics for UCT 3 are contained in Table 9. Here, it can be seen that
substantial time remains to collect followup observations of UCT 3; it will be visible for 2,237 seconds (about
37 minutes) with 95% confidence. Similar to the other UCTs, UCT 3 is highly unlikely to pass within 50km
of the ISS. Interestingly, the statistical data suggest that with an apparent magnitude of 13, UCT 3 has a
moderately large Albedo-Area. Overall, there is a 36.5% probability that the albedo-area exceeds 0.2, which
is a proxy threshold for identifying ‘large’ or ‘bright’ space objects.
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Figure 8: UCT 3: MEO Subsynchronous Admissible Region and Prioritization Parameter Satistics

Table 9: UCT 3: MEO:subsynch UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 1.000 2237 0.999 3178 0.365 0.0970
GTO:NOTA 1.000 2340 1.000 1447 0.080 0.0919
HEO:NOTA 1.000 2165 1.000 4702 0.553 0.1002
NOTA 1.000 2784 1.000 4684 0.002 0.1234
MEO:subsynch 1.000 3303 1.000 16780 0.007 0.1780
MEO:NOTA 1.000 3361 1.000 21120 0.469 0.1917

5.6 UCT 4: GTO Object

The utility of geosynchronous orbits has resulted in a substantial population of SOs in Geosynchronous
Transfer Orbits (GTOs). As seen in Table 2, fully 10% of all SOC objects are classified as possessing GTO
orbits. The UCT 4 observation geometry is shown in Figure 9. Additionally, the Admissible Region is shown
in Figure 10(a), while the prioritization parameter statistics for ‘Time Left to Detect,’ ‘Zero-Effort Miss,’
and ‘Albedo-Area’ are shown in Figures 10(b), 10(c), and 10(d).
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Figure 9: UCT 4 Geometry Visualization

Classification results using UCT 4 observations are tabulated in Table 10. Without a-priori information,
the probability that UCT 4 is a GTO:NOTA object is 34.8%. When SOC membership is presumed, the prob-
ability of a GTO:NOTA classification jumps to 91.5%. Emphatically, this is due to the strong representation
of GTO:NOTA objects in the SOC.

Table 10: UCT 4: GTO UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Count P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
GTO:NOTA 9400 0.3477 0.9147
HEO:NOTA 11897 0.4400 0.0567
NOTA 5200 0.1923 0.0274
MEO:NOTA 541 0.0200 0.0011
Totals 27038 1.0000 1.0000

Prioritization parameter statistics for UCT 4 are shown in Table 11. Here, UCT 4 should continue to be
detectable for an additional 812 seconds (13.5 minutes) with 95% confidence. As with other UCTs, there is
virtually no risk that UCT 4 will approach within 50km of the ISS. Also, with an apparent magnitude of 13,
the albedo-area statistics suggest that this parameter is relatively small.

Table 11: UCT 4: GTO UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 1.000 811.5 0.999 1728 0.000 0.0138
GTO:NOTA 1.000 804.1 1.000 1019 0.000 0.0132
HEO:NOTA 1.000 757.1 1.000 6718 0.000 0.0166
NOTA 1.000 1194.7 1.000 4006 0.000 0.0164
MEO:NOTA 1.000 1515.9 1.000 4842 0.000 0.0166
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Figure 10: UCT 4: GTO Admissible Region and Prioritization Parameter Satistics

5.7 UCT 5: GEO Object

Space objects in geosynchronous orbit generate substantial economic value (e.g., communications satellites)
and also represent a sizable population of large objects in the SOC (see Table 2). UCT 5 is generated
by just such an object, and is visualized in Figure 11. The admissible region is given in Figure 12(a) and
prioritization parameter statistics for ‘Time Left to Detect,’ ‘Zero-Effort Miss Distance,’ and ‘Albedo-Area
are shown in Figures 12(b), 12(c), and 12(d).

Table 12 presents the classification probabilities with and without assuming the SO is well represented by
the SOC state distribution. Here, the principal shortcoming of the proposed approach (discussed in §2.2.5)
is emphasized. As shown in Table 12, while the true SO orbit classification is GEO:slot, the classification
approach does not identify a non-zero probability for this classification. The region of space in the admissible
region (Figure 12(a)) that corresponds to orbits consistent with GEO:slot classifications is quite small, and
is not effectively sampled with the discretization used in this example. However, as discussed in §2.2.5, there
is a small region of orbits within the GEO:slot orbit classification that generate non-empty regions in the
admissible region A. Said differently, UCT 5 is consistent with the GEO:slot classification, however the
probability cannot be calculated due to sampling fidelity.
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Figure 11: UCT 5 Geometry Visualization

Table 12: UCT 5: GEO UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Count P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
GTO:NOTA 7502 0.2409 0.8651
HEO:NOTA 23021 0.7391 0.1301
NOTA 587 0.0188 0.0037
GEO:NOTA 36 0.0012 0.0011
GEO:graveyard 2 0.0001 0.0000
GEO:slot 0 * *
Totals 31148 1.0000 1.0000

The prioritization parameter statistics for UCT 5 are given in Table 13. Here, it is highly probable that
UCT 5 will continue to permit detection for 5,064 seconds (84 minutes) with 95% confidence. As with other
UCTs, it is highly probable that UCT 5 will not approach within 50km of the ISS. Interestingly, it is highly
probable (93.4%) that UCT 5 is generated by a SO with an Albedo-Area in excess of 0.2, possibly indicating
it is a large or very bright object.

Table 13: UCT 5: GEO UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 1.000 5064 1.000 3355 0.934 0.193
GTO:NOTA 1.000 5846 1.000 1590 0.858 0.183
HEO:NOTA 1.000 4774 1.000 6503 0.957 0.205
NOTA 1.000 9306 1.000 3986 1.000 0.233
GEO:NOTA 1.000 32110 1.000 33280 1.000 0.419
GEO:graveyard 1.000 32110 1.000 35020 1.000 0.431
GEO:slot * * * * * *
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Figure 12: UCT 5: GEO Admissible Region and Prioritization Parameter Satistics
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5.8 UCT 6: Molniya Object

As shown in Figure 13 the final track, UCT 6, is generated by a SO in Molniya orbit. The admissible
region generated by UCT 6 is shown in Figure 14(a), while the ‘Time Left to Detect,’ ‘Zero-Effort Miss,’ and
‘Albedo-Area prioritization parameter histograms and CDFs are given in Figures 14(b), 14(c), and 14(d),
respectively.

Figure 13: UCT 6 Geometry Visualization

The classification statistics for UCT 6 are summarized in Table 14. Without presuming that UCT 6
is generated by an object well represented by the SOC, the classification probability for Molniya:NOTA is
8.4%. However, because there is a dearth of objects with Molinya orbits in the SOC, the probability drops
to 3.6% if the SOC is used as an a-priori distribution.

Table 14: UCT 6: Molniya UCT Classification Probabilities
Hi Hi,ap

Classification (Ai) Count P [Xu ∈ Ai|A] P [Xu ∈ Ai|A,SOC]
GTO:NOTA 9901 0.3737 0.8990
HEO:NOTA 10088 0.3807 0.0449
Molniya:NOTA 2226 0.0840 0.0362
NOTA 3888 0.1467 0.0191
MEO:NOTA 393 0.0148 0.0008
Totals 26496.0000 1.0000 1.0000

A number of prioritization parameter statistics for UCT 6 are given in Table 15. Using these statistics,
it can be seen that UCT 6 should continue to be visible for a further 575 seconds (9.6 minutes) with 95%
confidence, and that there is a minimal probability that UCT 6 will approach within 50km of the ISS over the
time interval examined (greater than 842km with 95% confidence). Similarly, the ‘Albedo-Area’ statistics
suggest that the object is relatively small and / or dark.

With the geometries, classification probabilities, and prioritization statistics for each of the simultaneously
detected UCTs given, a discussion is now given regarding how this actionable information can be used to
rigorously support prioritization decisions for SSN sensor observations.
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Figure 14: UCT 6: Molniya Admissible Region and Prioritization Parameter Satistics

Table 15: UCT 6: Molniya UCT Prioritization Parameter Statistics
tLTD @ 95% dZEM @ 95% ρA @ 95%

Class. (Ai) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

Combined 1.000 575.2 0.998 842 0.000 0.00569
GTO:NOTA 1.000 601.6 1.000 479 0.000 0.00548
HEO:NOTA 1.000 497.8 1.000 3227 0.000 0.00580
Molniya:NOTA 1.000 534.0 1.000 1317 0.000 0.00558
NOTA 1.000 1491.4 1.000 3744 0.000 0.00957
MEO:NOTA 1.000 1633.2 1.000 3396 0.000 0.00891

5.9 Discussion of Results

The classification results are first discussed, followed by the prioritization parameter statistical information.
In each discussion several broad observations regarding SSN sensor prioritization are made. The classification
probabilities for all UCTs without a-priori information are summarized in Table 16. Here, for each UCT,
the orbit classification probability is explicitly stated. Importantly, it should be noted that the majority of
classification probabilities are empty for each UCT, indicating that these classifications have been effectively
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ruled out using the classification method. For those classifications with non-zero probability, the method
is quite consistent in recovering orbit classifications reflecting the true SO orbit type (with the exception
of the GEO:slot classification for UCT 5 as discussed in §5.5.7. As summarized in Table 17, when the
classification is conditioned on SOC orbit densities, these probabilities are either magnified or attenuated
depending on how well represented a given orbit type is in the SOC. For common orbit types, such as
LEO:polar and GTO:NOTA orbits, this effect substantially increases the correct classification probability.
However, for underrepresented orbit classifications (such as LEO:LILO, which is known to be under-sampled),
conditioning the probabilities on the SOC distribution severely reduces correct classification probabilities.

If the objective of the SSN is to discover and track SOs from underrepresented orbit classifications, such as
LEO:LILO, then the classification should not be conditioned on the existing SOC. Conversely, if the objective
is to detect and track newly generated objects in a well represented classification (perhaps resulting from
a LEO:polar object breakup), then conditioning the classification on the SOC may be a sensible approach.
Additionally, whether the classification is conditioned or not, the relative classification probabilities in Tables
16 and 17 may still be useful when prioritization decisions must be made; perhaps the operator has no interest
in HEO:NOTA objects, and wishes to focus SSN sensor assets on other categorizations.

Table 16: Classification Statistics Summary: No A-Priori Information

Classification (Ci) U
C
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U
C

T
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t
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C

T
6:

M
ol

n
iy

a

LEO:polar 0.0490 - - - - -
LEO:LILO - 0.0419 - - - -
LEO:NOTA - 0.0055 - - - -
Molniya:NOTA - - - - - 0.0840
GTO:NOTA - 0.6454 0.2364 0.3477 0.2409 0.3737
MEO:low 0.0624 - - - - -
MEO:subsynch - - 0.0100 - - -
MEO:NOTA - - 0.0034 0.0200 - 0.0148
GEO:slot - - - - * -
GEO:graveyard - - - - 0.0001 -
GEO:NOTA - - - - 0.0012 -
HEO:NOTA 0.3362 0.3072 0.6224 0.4400 0.7391 0.3807
NOTA 0.5524 - 0.1278 0.1923 0.0188 0.1467

Finally, the prioritization parameter statistics for the combined distributions generated by all UCTs are
given in Table 18. Using this actionable information an operator may make prioritization decisions for UCT
sensor tasking. For example, if the operator is concerned with detecting and initiating tracks on as many
SOs as possible, it may be best to task sensors to follow-up on UCT 1 and UCT 2 before they are no longer
detectable (3.0 s and 11.7s with 95% confidence). None of the UCTs pose a credible collision risk with
the ISS over the time horizons considered; even the UCT with the closest approaches will pass in excess of
842km away with 95% confidence. Lastly, if the operator is interested in only tracking potentially larger or
brighter objects, then based on the rigorously derived statistical information in Table 18, additional SSN
sensor tasking for UCT 5 and UCT 3 may provide best results. Conversely, if the operator wishes to track
SOs that are smaller or darker, then perhaps UCT 1 and UCT 2 should be observed further.
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Table 17: Classification Statistics Summary: With A-Priori Information

Classification (Ci) U
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LEO:polar 0.8264 - - - - -
LEO:LILO - 0.0007 - - - -
LEO:NOTA - 0.0223 - - - -
Molniya:NOTA - - - - - 0.0362
GTO:NOTA - 0.9674 0.8578 0.9147 0.8651 0.8990
MEO:low 0.0169 - - - - -
MEO:subsynch - - 0.0062 - - -
MEO:NOTA - - 0.0003 0.0011 - 0.0008
GEO:slot - - - - * -
GEO:graveyard - - - - 0.0000 -
GEO:NOTA - - - - 0.0011 -
HEO:NOTA 0.0556 0.0223 0.1106 0.0567 0.1301 0.0449
NOTA 0.1011 - 0.0251 0.0274 0.0037 0.0191

Table 18: Prioritization Parameter Statistics: A Comparison
True tLTD @ 95% dZEM @ 95% ρA @ 95%

UCT # Class. (Ci) P [tLTD ≥ 10s] Conf. (s) P [dZEM > 50km] Conf. (km) P
[
ρA > 0.2m2

]
Conf. (m2)

1 LEO:polar 0.915 2.99 1.000 4346 0.000 0.000931
2 LEO:LILO 0.960 11.65 1.000 4555 0.000 0.000898
3 MEO:subsynch 1.000 2237 0.999 3178 0.365 0.0970
4 GTO:NOTA 1.000 811.5 0.999 1728 0.000 0.0138
5 GEO:slot 1.000 5064 1.000 3355 0.934 0.193
6 Molniya 1.000 575.2 0.998 842 0.000 0.00569

6 Conclusions

A Bayesian approach using admissible regions is proposed to classify space object orbits based only on in-
complete state information derived directly from single sensor detections. The classification methodology is
also extended to allow a-priori assumed classification distributions (e.g., from the Space Object Catalog) to
be used in the classification activity. Further, a prioritization parameter approach wherein general functional
mappings of sensor data and the hypothesized state can be used to infer parameters or properties of newly
detected space objects is proposed. Hypotheses can be formed and rigorously tested using the resulting
prioritization parameter distributions, enabling operators to define multiple decision criterion with which to
prioritize future sensor tasking. Combined, classification and prioritization parameter statistics constitute
actionable information that may be ingested by operators or autonomous algorithms to prioritize SSA re-
source allocation. Several example classifications and prioritization parameters are proposed and used in
the simulated results section. A scenario involving six simultaneous UCT detections is used to motivate and
discuss the algorithm performance and potential prioritization schemes.
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